Effects of Cannabis Therapy on Endogenous Cannabinoids

INVESTIGATOR: Daniele Piomelli, Pharm.D., Ph.D.

STUDY LOCATION: University of California, Irvine

PROJECT TITLE: Effects of Cannabis Therapy on Endogenous Cannabinoids

PROJECT TYPE: Pre-Clinical Study

STATUS: COMPLETE

RESULTS:

This study assessed the effect of acute and chronic treatment of rats with the cannabinoid agonist, WIN-55212-2, on the levels of anandamide in blood and brain tissue. No change was observed in plasma anandamide concentration after either acute or chronic treatment. Likewise, there was no significant change in anandamide levels in three brain regions: cerebellum, nucleus accumbens, and brainstem. Chronic, but not acute, treatment with WIN-55212-2 caused a marked increase in anandamide levels in the brain hippocampus, a region that is crucially involved in learning and memory.

In order to compare the actions of cannabinoids with those of other abused substances, the effects of acute administration of amphetamine and alcohol on brain anandamide levels in the rat were measured. It was found that amphetamine (2 mg/kg ip) significantly increases anandamide levels in the nucleus accumbens, but not in the hippocampus and cerebellum. Furthermore, it was found that acute alcohol administration (4 g/kg ip) decreased anandamide levels in the hippocampus, cerebellum, and nucleus accumbens. These finding suggest that the endogenous cannabinoid system may respond in selective ways to different drugs of abuse.

These experiments contributed preliminary data to work that was later published in the journal Neuropsychopharmacology.

ABSTRACT:

Despite a long history of use in traditional medicine, the therapeutic value of the cannabis remains uncertain. The active principle in cannabis, D9-tetrahydrocannabinol (D9-THC), exerts its effects by activating high-affinity receptors present on the surface of brain and immune cells. These receptors are called cannabinoid receptors and are normally engaged by a group of natural fat-derived substances called endocannabinoids. The endocannabinoids are a novel group of neurotransmitters that may contribute in important ways to movement, cognition, pain and other physiological processes. We have learned much on these molecules in recent years, but still don't know how they may be affected by treatment with cannabis and D9-THC. Yet, elucidating such interactions would be important to evaluate the consequences of medical treatment with these and other cannabinoid agents. Here, we propose to test the hypothesis that long-term cannabis and D9-THC administration interfere with activity of the endocannabinoid system. The first aim of the proposed research is to determine whether cannabis and D9-THC affect circulating levels of endocannabinoid compounds in humans. Initial analyses have shown that such measurements are feasible by using a technique known as high-performance liquid chromatography/mass spectrometry (HPLC/MS). The proposed studies will determine circulating endocannabinoid levels in persons treated with marijuana, D9-THC (dronabinol) or placebo. The plasma samples will be kindly provided by Dr. D. Abrams (at U.C. San Francisco) who is currently funded by the CMCR to investigate the effects of cannabinoid therapy in HIV patients. The second aim of the proposed research is to determine whether cannabis and D9-THC affect endocannabinoid formation and/or inactivation in rodents. We will examine the effects of acute and chronic D9-THC administration on (1) endocannabinoid levels in rat plasma and brain tissue; and (2) activities of endocannabinoid-metabolizing enzymes in rat brain tissue. The main purpose of these experiments, which will be conducted in collaboration with Dr. F. Rodríguez de Fonseca (at the Carlos Haya Hospital in Málaga, Spain), is to complement our human studies by providing mechanistic insight on how cannabinoid drugs affect the endocannabinoid system. Brain neurotransmitter systems are highly plastic and regulate their activity when they are challenged with exogenous drugs. We hypothesize that treatment with cannabis or D9-THC may produce compensatory changes in the activity of the endocannabinoid system. Such changes might in turn influence in important ways the therapeutic outcome of cannabinoid therapy and participate in withdrawal phenomena after drug cessation.

PUBLICATIONS:

Type:

Title:

Journal Article Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J, Klosterkotter J, Piomelli D. Cerebrospinal Anandamide Levels are Elevated in Acute Schizophrenia and are Inversely Correlated with Psychotic Symptoms. Neuropsychopharmacology. 2004 Nov;29(11):2108-14.

New Breathalyzer May Detect Pot Impairment

Megan Tevrizian, NBC7 San Diego, August 7, 2018

A California company may have developed a game changer for detecting impaired drivers.

The company Hound Labs created a breathalyzer able to detect the amount of THC in a driver's breath.

“It’s an incredibly challenging scientific problem to ensure the really, really low concentrations,” said Hound Labs CEO Mike Lynn.

“We’re talking parts per trillion in your breath,” Lynn said.

The device uses the breath to measure THC, the psychoactive chemical in pot that makes you high.

Read the story here


How One Boy's Fight With Epilepsy Led To The First Marijuana-Derived Pharmaceutical

Lesley McClurg, KQED, August 6, 2018

The first prescription medication extracted from the marijuana plant is poised to land on pharmacists' shelves this fall. Epidiolex, made from purified cannabidiol, or CBD, a compound found in the cannabis plant, is approved for two rare types of epilepsy.

Its journey to market was driven forward by one family's quest to find a treatment for their son's epilepsy.

Scientific and public interest in CBD had been percolating for several years before the Food and Drug Administration finally approved Epidiolex in June. But CBD — which doesn't cause the mind-altering high that comes from THC, the primary psychoactive component of marijuana — was hard to study, because of tight restrictions on using cannabis in research.

Read the article here


Landscape on marijuana research shifting despite federal roadblocks

Brooke Staggs, Orange County Register, August 1, 2018

The legalization of recreational cannabis raises new opportunities, and challenges, in addressing the health and safety effects of cannabis use.

After decades of disconnect between federal officials who consider cannabis a harmful drug and public opinion that increasingly views cannabis as something that should be legal and is potentially good medicine, the landscape on marijuana research might be shifting.

This week, UC Irvine announced it received a $9 million grant from the National Institute on Drug Abuse to study how long-term cannabis exposure affects young people’s brains.

California regulators also are setting up a process to award $10 million by summer 2019 — and $10 million more each year for the next decade — for universities to study the impacts of marijuana legalization.

And a bill recently proposed in Congress would apply the new California research model across the country, allowing scientists to gather data and study the effects of cannabis legalization nationwide for a decade.

Read the rest of the article here


More News

Click here to access the CMCR news archives.

Igor Grant, MD

Introduction/Overview
CMCR Symposium, June 2018


Daniele Piomelli, MD, PhD, PharmD

The health impact of cannabis
CMCR Symposium, June 2018


Ziva Cooper, PhD

Therapeutic potential of cannabis for pain alone and as an adjunct to opioids
CMCR Symposium, June 2018


Iain McGregor, PhD

Medicinal cannabis research down under: Introducing the Lambert Initiative for Cannabinoid Therapeutics
CMCR Symposium, June 2018


Thomas Marcotte, PhD

Cannabis and public safety: The challenge of cannabis-impaired driving
CMCR Symposium, June 2018


Copyright © 2018 CENTER FOR MEDICINAL CANNABIS RESEARCH. | University of California, San Diego
cmcr@ucsd.edu | HNRP |